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Intro

Real-time monitoring: big data

Lots of new instruments are going in
◮ That hardware needs to be maintained

Each instrument is producing more data

◮ Let’s use that data to tell us when there’s been a change that needs
attention
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Presenting Bayesian Surprise

Automated

Data-driven

Using lightweight computations

Detects unusual data

Does it all in real-time

Basic idea: learn the distribution of historical data and compare it to
the newest incoming data.
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Surprise theory
Original idea of “Bayesian surprise” (2004):

◮ Laurent Itti - University of Southern California Neuroscientist
◮ Pierre Baldi - University of California-Irvine Computer Scientist

Used to mimic human response to video images:
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Surprise theory

Adaptation to sensors:
◮ Owen Langman’s M.S. thesis - UW Limnology, 2009

Uses identical surprise model (Gamma-Poisson) as Itti and Baldi
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Surprise theory

Problems with original theory:
◮ Ad-hoc “memory” parameter must be tuned manually
◮ Cannot track mean and variance simultaneously
◮ Surprise machines were individually tuned to detect specific errors

⋆ Proof of concept
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Bayesian statistics
Bayesian statistics views a probability distribution as representing our
degree of belief. This idea can be applied both to our data and to the
underlying data-generating model.

Examples of the three distributions used in this work:
◮ X ∼ Normal(µ = 0, τ = 1)
◮ Y ∼ Gamma(α = 2, β = 1)
◮ Z ∼ tν=4(µ = 0, σ2 = 1)
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Hierarchical models

A hierarchical model has more than one random element

Randomness at one level feeds into the next

m ~ Normal(μ, p)

p ~ Gamma(α, β)

Y ~ Normal(m, p)
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Hierarchical models

p|α,β ~ Gamma(α, β)

⌠
⌡

⌠
⌡ [Y|m,p,μ,α,β]  x  [m|μ,p]  x  [p|α,β] dm dp

Integrate out the model’s

unobserved layers:

m|μ,p ~ Normal(μ, p)

Y|m,p ~ Normal(m, p)
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Hierarchical models

⌠
⌡

⌠
⌡ [Y|m,p,μ,α,β]  x  [m|μ,p]  x  [p|α,β] dm dp   =   [Y|μ,α,β]

●●● ● ●●

Result is the predictive

distribution for new data:

Y|μ,α,β ~ t(μ,α,β)

Use the data to estimate

new values of μ, α, β
Compare the estimated

distribiution to the

predictive distribution

(Two different t-distributions):
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Calculate the surprise

= Kullbach-Leibler divergence,

or ‘Surprise’+

-

Difference in log-likelihood

(log[predicted] - log[estimated])

x Prior predictive

distribution

⌠
⌡Integrate the result

0

W. Brooks (USGS / UW) Surprise theory May 2012 15 / 26



. . . . . .

Iterate the process

Use moving windows to iterate the process as new data comes in:

2.31.5 1.7 2.3 2.2 1.5 1.9 1.8 2.0 1.1 1.4... 2.2 1.9 1.8

Data windowPrior window
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Simulated surprise
Surprise generated by a sudden change in mean:
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Simulated surprise
Surprise generated by a sudden change in variance:
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Field data
Pheasant Branch (Middleton, WI) water temp (Dec 2011 - Jan 2012):
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Field data
Trout Lake LTER site (northern WI) CDOM (Nov. 2009):

W. Brooks (USGS / UW) Surprise theory May 2012 23 / 26



. . . . . .

Outline

.
. .1 Overview

.
. .2 Methodological Background

Surprise theory
Bayesian statistics

.
. .3 Examples

Simulations
Field data

.
. .4 Future directions

W. Brooks (USGS / UW) Surprise theory May 2012 24 / 26



. . . . . .

Future directions

Add dependence on other variables:

Regression on other variables

Autoregression

Spatial dependence

m ~ Normal(μ, p)

p ~ Gamma(α, β)

Y ~ Normal(m, p)

Other variable(s)
?

?
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Conclusion

Surprise is a data-driven tool that can help to quickly detect problems
with real-time sensors and therefore improve the up-time of a
monitoring network.
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